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Abstract—Learning in non-stationary environments is not an
easy task and requires a distinctive approach. The learning
model must not only have the ability to continuously learn, but
also the ability to acquired new concepts and forget the old
ones. Additionally, given the significant importance that social
networks gained as information networks, there is an ever-
growing interest in the extraction of complex information used
for trend detection, promoting services or market sensing. This
dynamic nature tends to limit the performance of traditional
static learning models and dynamic learning strategies must be
put forward.

In this paper we present a learning strategy to learn with
drift in the occurrence of concepts in Twitter. We propose three
different models: a time-window model, an ensemble-based model
and an incremental model. Since little is known about the types of
drift that can occur in Twitter, we simulate different types of drift
by artificially timestamping real Twitter messages in order to
evaluate and validate our strategy. Results are so far encouraging
regarding learning in the presence of drift, along with classifying
messages in Twitter streams.

I. INTRODUCTION

Social networks have become popular in recent years with
millions of daily users sharing their everyday activities with
friends and family. Users link themselves by defining others to
follow, and consequently have their own followers based not
only on social relations but also related with topics of interest.

Twitter is one of the most well-known social media plat-
forms, being characterized by providing a microblogging ser-
vice where users are able to post text-based messages of up to
140 characters, mimicking the SMS (Short Message Service)
messages, and known as tweets. According to the Twitter
website (http://www.twitter.com) the broad coverage
of this social network is confirmed by having 255 million
monthly active users that post 500 million tweets per day.
Another interesting characteristic of Twitter is the presence
of hashtags, single words started with the symbol “#”, used
to classify each message content. Recently, the use of hashtags
became popular, being adopted by other social networks like
Facebook or Instagram, as more roles were identified to the use
of hashtags, like bringing a wider audience into discussion [1],
spreading an idea [2], get affiliated with a community [3], or
bringing together other Internet resources [4].

Although mostly considered as an entertainment tool, tweets
may contain information of broad interest [5] and are being
widely studied as they have a wide range of applications and

uses, like event detection [6]–[9], academic tool [10]–[12],
news media [6], [13] or mining political opinion [14], [15].

Additionally, it is relevant to note how challenging can be to
learn in social network environments be, especially in Twitter.
Because of its nature of a small document social network, users
often post on a daily basis and use mostly their mobile devices,
which means they can post easily and everywhere, creating a
deluge of data in real time. Twitter can be seen as a particular
form of a temporal data stream with a considerable amount of
noise, not only because it is easy to post, but also because no
rules are applied to the posted material. Besides that, concepts
appear and disappear often, as users post quickly as an event
occur, like an earthquake, but they tend to naturally dissapear
after a few days, reoccurring or not some time later. The main
focus of our work will be to identify which learning model is
better suited to learn in this dynamic environment, where the
frequency of concepts drift over time.

To deal with the concept drift in the Twitter stream we
propose a threefold approach: a time-window model, an en-
semble based model and an incremental model. We propose
the simulation of different types of drift by artificially times-
tamping real Twitter messages in a sequential way, as a way
to guarantee that we have a ground truth goal and hence can
evaluate and validate our strategy. By studying different types
of drift we aim to identify the learning characteristics best
tailored to learn in such environments, where each drift might
occur.

Our time-window model is characterized by just taking into
account recent information, given a time-window, disregarding
previously seen examples from time to time. The ensemble
model is based on the idea that the use of a committee
of classifiers can provide better results than the best of the
single classifiers, when correctly combined. To characterize
an ensemble-based system two choices must be taken into
account: the choice of the classifiers and the choice of the
combination function, i.e., the voting algorithm used to com-
bine the output of multiple classifiers into a single decision.
Finally, the incremental model is characterized by retaining in
one single classifier all the information gathered over time.

Our contribution regarding the ensemble model, is to eva-
luate how to combine the ensemble members to dynamically
update the classifiers’ weights, so that the ensemble can learn
incrementally and does not need to store previously seen data.
The rest of the paper is organized as follows. We start in



Section II by describing the related work regarding social net-
works and concept drift. We then proceed in Section III by de-
tailing the proposed approach and in Section IV explaining the
experimental setup, including the dataset description, the pre-
processing methods and learning and evaluation approaches. In
Section V we present and discuss the obtained results. Finally,
in Section VI we present the most relevant conclusions and
delineate some directions for future work.

II. RELATED WORK

A. Social Networks

Social networks have gained significant importance and
are being widely studied in many fields in the last years.
Modern challenges in social networks involve not only com-
puter science matters but also social, political, business, and
economical sciences. In computer science, and considering our
focus on Twitter, recent works comprise event detection [7],
[8], information spreading [16], community mining [17],
crowdsourcing [18] and sentiment analysis [15].

In [19] we have proposed the use of meta-classes to
boost the performance of Twitter messages classification. This
preliminary study shed light on the possibility of evaluating
message content in order to predict hashtags. Regarding Twit-
ter hashtags, and particularly hashtag recommendation, we
have also identified the recent study presented in [20], where
an approach for hashtag recommendation is introduced. This
approach computes a similarity measure between tweets and
uses a ranking system to recommend hashtags to new tweets.
In [21] the use of hashtags to classify Twitter messages is
done by clustering similar tweets in a graph based collective
classification strategy. Although the presented results seem
promising, we have identified the lack of adaptiveness in
this strategy.A different approach is proposed in [22], where
an event detection method is described to cluster Twitter
hashtags based on semantic similarities between the hashtags.
This work is in line with our previous work except for the
fact that the semantic similarities are computed based on
the message content similarities rather than being based on
semantic hashtag similarities.

B. Concept Drift

In the presence of concept drift, the learning task is not
easy and requires a special approach, different from those
commonly used, as the arriving instances can not be treated
as equally important contributors to the final concept [23]. In
non-stationary environments like the Twitter stream, effective
learning requires a learning algorithm with the ability to
detect context changes without being explicitly informed about
them, quickly recover from the context change and adjust
its hypothesis to the new context. It should also make use
of previous experienced situations when old contexts and
corresponding concepts reappear [24].

According to [25], there are 3 approaches to handle
concept drift: (1) instance selection, (2) instance weighting
and (3) ensemble learning. A review of concept drift applied
to intrusion detection is presented in [26].

In [27] the algorithm Learn++.NSE is proposed as an
algorithm to deal with drift. To deal with scenarios of im-
balanced data, the authors in [28] proposed Learn++.CDS, a
combination of the Learn++.NSE algorithm with the SMOTE
algorithm proposed by [29]. A different ensemble method
called DWM-WIN was recently proposed in [30], to overcome
the known limits of [31] namely not considering the time
classifiers were define nor the past correct classifications.

The related work presented so far sheds light on the impor-
tance of dealing with concept drift specially in dynamic sce-
narios like social networks, and particularly in Twitter, where
important information can be mined. Multiple applications
like spam email filtering, intrusion detection, recommendation
systems, event detection or improve search capabilities are just
pointed examples.

III. PROPOSED APPROACH

A. Twitter classification problem

Twitter classification is a multi-class problem that can be
cast as a time series of tweets. It consists of a continuous se-
quence of instances, in this case, Twitter messages, represented
as X = {x1, . . . , xt}, where x1 is the first occurring instance
and xt the latest. Each instance occurs at a time, not necessarily
in equally spaced time intervals, and is characterized by a
set of features, usually words, W = {w1,w2, . . . ,w|W|}.
Consequently, instance xi is denoted as the feature vector
{wi1,wi2, . . . ,wi|W|}.

When xi is a labelled instance it is represented as the pair
(xi, yi), being yi ∈ Y = {y1, y2, . . . , y|Y|} the class label for
instance xi.

We have used a classification strategy previously introduced
in [19], where the Twitter message hashtag is used to label
the content of the message, which means that yi represents the
hashtag that labels the Twitter message xi.

The purpose of this classification problem is to define the
unknown predict function ht : X → Y , that predicts the class
label yi, the hashtag, according to xi, the Twitter message. In
a time line perspective, ht uses the historical data {x1, . . . , xt}
to predict xt+1. The function ht is then the Twitter message
classifier used to predict the hashtag of the set of tweets
presented in the subsequent time-windows.

Notwithstanding the Twitter message classification is a
multi-class problem in its essence, it can be decomposed in
multiple binary tasks in a one-against-all binary classification
strategy. In this case, a classifier ht is composed by |Y | binary
classifiers.

B. Learning models

For classifying time series like the Twitter stream we have
to devise proper learning models. In particular if we want to
forecast which topics will become trends on Twitter, we have
to carefully choose our guiding hypothesis for this setting.
We present three models to tackle the Twitter classification
problem: a time-window model, an ensemble model and an in-
cremental model. The time-window model is a batch learning
model unable to retain all the previously seen examples. The
incremental model learns batches of tweets and has a memory



mechanism that allows awareness of previously seen examples.
Unlike the previous ones, the ensemble model has a modular
structure which enables temporal adaptation to new incoming
tweets on the basis of the data sampling real distribution over
time. In a way, the built-in memory mechanism is inherited
from the (recent) past.

Algorithm 1 defines the basic steps of the time-window
model. For each collection of documents T in a time-window
t, T t = {x1, . . . , x|T t|} with labels {y1, . . . , y|T t|} → {−1, 1},
the dataset Dt is updated with the newly seen documents.
No previously seen documents are stored in Dt and thus Ct
classifier is always trained with the examples of the most
recent time-window.

Algorithm 1: Time-Window Model

Input:
For each collection of documents T in a time-window t,
T t = {x1, . . . , x|T t|} with labels
{y1, . . . , y|T t|} → {−1, 1} t = 1, 2, . . . T

1 for t=1,2, . . . T do
2 Dt ← T t

3 end
4 BaseClassifier Ct : Learn (Dt), obtain: ht: X → Y
5 Time-Window Classifier Ct : Classify (T t+1), using: ht:
X → Y

Unlike the time-window model, the incremental model
uses all the previously seen examples, as can be illustrated
in Algorithm 2, by updating the documents collection Dt
in an incremental manner. Even though this model retains
all the information gathered over time, one can argue that
continuously increasing Dt would lead to storing problems.
This drawback leads to find a new way to circumvent this
ever-growing problem.

Algorithm 2: Incremental Model

Input:
For each collection of documents T in a time-window t,
T t = {x1, . . . , x|T t|} with labels
{y1, . . . , y|T t|} → {−1, 1} t = 1, 2, . . .

1 for t=1,2,. . . T do
2 Dt ← Dt ∪ T t

3 end
4 BaseClassifier Ct : Learn (Dt), obtain: ht: X → Y
5 Incremental Classifier Ct : Classify (T t+1), using: ht: X → Y

Therefore, the ensemble model, presented in Algorithm 3,
proposes to store all the information gathered in a different
way. For each collection of documents T , that contain both
positive and negative examples and occur in a time-window
t, a classifier Ct is trained and stored. When a new collection
of documents in the subsequent time-window occur, all the
previously trained classifiers are loaded, and will classify

the newly seen examples. The prediction function of the
ensemble, composed by the set of classifiers already created,
is a combined function of the outputs of all the considered
classifiers. Several strategies can be used herein. We will use a
majority voting strategy where each model participates equally.
If the sum of all votes is a null value, which means a tie, the
classification of the most recent classifier is used to untie. The
documents of the previously seen time-windows are not stored
in this approach even though the possible learning information
is stored along in the classifier trained immediately after it.

Algorithm 3: Ensemble Model

Input:
For each collection of documents T in a time-window t,
T t = {x1, . . . , x|T t|} with labels
{y1, . . . , y|T t|} → {−1, 1} t = 1, 2, . . . T

1 for t=1, 2, . . . T do
2 Dt ← T t

3 BaseClassifier Ct : Learn (Dt), obtain: ht: X → Y
4 end
5 for k=1, . . . , t do
6 ModuleClassifier Ck : Classify (T t+1), using: hk: X → Y
7 end

8 Ensemble Et : Classify (T t+1), using:

et =

{ ∑
t ht(T t+1)

|
∑

t ht(T t+1)| if
∑

t h
t(T t+1) 6= 0

ht(T t+1) if
∑

t h
t(T t+1) = 0

IV. EXPERIMENTAL SETUP

A. Dataset

There are few works regarding the learning process in the
occurrence of concept drift in the particularly field of social
networks and little is known about the types of drift that can
occur. Hence, we propose to generate a dataset that simulates
different types of drift in Twitter by artificially timestamping
real tweets, in order to evaluate and validate our strategy. By
inducing different types of drift with controlled features, we
intend to identify the learning characteristics needed to deal
with them and thus define best tailored learning features to this
specific problem. One should always consider that given the
amount of data produced in Twitter, storage can be of major
importance.

The drifts we intend to represent are based on the four
different major types proposed in [32], namely (i) sudden,
(ii) gradual, (iii) incremental, and (iv) reoccurring. Thus, we
have made use of these four types of drift and have defined
ten different drift patterns which cover different behaviours
corresponding to classes (hashtags).

Table I shows the different types of drifts sorted by the
artificially generated timestamps and their corresponding time-
windows. Time is represented as 24 continuous time-windows,
in which the frequency of each hashtag is changed in order
to represent the defined drifts. Each tweet is then timestamped
so it can belong to one of the time-windows we have defined.



Timewindow Sudden#1 Sudden#2 Gradual#1 Gradual#2 Incremental#1 Incremental#2 Reoccuring Regular#1 Regular#2 Regular#3
1 0 0 0 60 0 60 0 20 50 20
2 0 0 10 60 0 60 0 20 50 50
3 0 0 10 0 0 60 0 20 50 20
4 0 0 0 0 0 60 0 20 50 50
5 0 50 0 50 0 60 0 20 50 20
6 0 50 20 50 4 56 50 20 50 50
7 0 50 20 0 8 52 50 20 50 20
8 0 50 0 0 12 48 50 20 50 50
9 0 50 0 40 16 44 0 20 50 20
10 0 50 30 40 20 40 0 20 50 50
11 0 0 30 0 24 36 0 20 50 20
12 0 0 0 0 28 32 0 20 50 50
13 0 0 0 30 32 28 0 20 50 20
14 0 0 40 30 36 24 50 20 50 50
15 50 0 40 0 40 20 50 20 50 20
16 50 0 0 0 44 16 50 20 50 50
17 50 0 0 20 48 12 0 20 50 20
18 0 0 50 20 52 8 0 20 50 50
19 0 0 50 0 56 4 0 20 50 20
20 0 0 0 0 60 0 0 20 50 50
21 0 0 0 10 60 0 0 20 50 20
22 0 0 60 10 60 0 50 20 50 50
23 0 0 60 0 60 0 50 20 50 20
24 0 0 0 0 60 0 50 20 50 50

Total: 150 300 420 420 720 720 450 480 1200 840

Table I
FREQUENCY OF HASHTAGS OVER TIME.

Table I also represents the frequency we have defined for each
hashtag over time.

Analysing Table I, one can also notice that there are 2
instances of sudden, gradual and incremental drifts, 1 instance
of a reoccurring drift and 3 with regular feeds. For instance,
in the reoccurring drift we introduce 50 tweets in time-
windows 6, 7, and 8 and later in time-windows 14, 15, and
16. Regularity is represented here to show tweets that occur
in a continuous frequency, i.e. without drift.

Hence, the main idea is to represent drift in the Twitter
message classification. Since a Twitter labelled dataset is
missing so far, we use the hashtags enclosed in the message
as the message classification, as previously introduced by the
authors in [19].

In order to accomplish this purpose, we start by defining
10 different hashtags, one for each defined drift, representing
different concepts and hence different classes, such as real-
madrid and literature. By trying to use mutually exclusive
concepts we intend to avoid misleading the classifier, since
two different tweets may represent the same concept. Table II
shows the chosen hashtags and the corresponding drift.

The Twitter API (https://dev.Twitter.com) was
then used to request public tweets that contain the defined
hashtags. The requests have been made between 19 October
2013 and 31 October 2013 and tweets were only considered if
the user language was defined as English. We have requested
more than 10.000 tweets, even though some of them were
discarded, like for instance those tweets containing no message
content besides the hashtag.

B. Representation and Pre-processing

A tweet is represented as a vector space model, also
known as Bag of Words. The collection of features is built
as the dictionary of unique terms present in the documents
collections. Each tweet of the document collection is indexed
with the bag of the terms occurring in it, i.e., a vector with

Drift Hashtag
Sudden #1 #bradpitt
Sudden #2 #realmadrid
Gradual #1 #ryanair
Gradual #2 #literature

Incremental #1 #twitter
Incremental #2 #ferrari

Reoccuring #syria
Regular #1 #jobs
Regular #2 #sex
Regular #3 #nowplaying

Table II
CORRESPONDENCE BETWEEN TYPE OF DRIFT AND HASHTAG.

one element for each term occurring in the whole collection.
The hashtag was removed from the message content in order
to be exclusively used as the document label.

High dimensional space can cause computational problems
in text-classification problems where a vector with one element
for each occurring term in the whole connection is used to
represent a document. Also, over-fitting can easily occur which
can prevent the classifier to generalize and thus the prediction
ability becomes poor. Pre-processing methods were applied
in order to reduce feature space. These techniques, besides
reducing the document size, prevent the mislead classification
as some words, such as articles, prepositions and conjunctions,
are non-informative words. These words, called stopwords, oc-
cur more frequently than informative ones. Stopword removal
was then applied, preventing those non informative words from
misleading the classification.

Stemming method was also applied. This method consists in
removing case and inflection information of each word, redu-
cing it to the word stem. Stemming does not alter significantly
the information included, but it does avoid feature expansion.

C. Learning and Evaluation

The evaluation of our approach was done by the previously
described dataset and using the Support Vector Machine
(SVM). SVM constitute currently the best of breed kernel-



Time-window Ensemble Incremental
Sudden #1 55.93% 58.42% 54.85%
Sudden #2 60.22% 80.12% 88.84%
Gradual #1 49.88% 40.45% 65.21%
Gradual #2 45.08% 74.53% 82.41%

Incremental #1 41.41% 30.69% 60.35%
Incremental #2 52.01% 61.72% 79.45%

Reoccurring 73.59% 82.92% 89.74%
Regular #1 55.78% 55.53% 84.44%
Regular #2 57.69% 88.05% 93.23%
Regular #3 23.71% 30.65% 65.35%
Average: 51.53% 60.31% 76.39%

Table III
COMPARATIVE RESULTS: F1 MEASURE

based technique, exhibiting state-of-the-art performance in
text classification problems [33], [34] and was used in our
experiments to construct the proposed models.

In order to evaluate the binary decision task of the pro-
posed models we defined well-known measures based on
the possible outcomes of the classification, such as, error
rate ( FP+FN

TP+FP+TN+FN ), recall (R = TP
TP+FN ), and precision

(P = TP
TP+FP ), as well as combined measures, such as,

the van Rijsbergen Fβ measure, which combines recall and
precision in a single score: Fβ = (β2+1)P×R

β2P+R .
Fβ is mostly used in text classification problems with β = 1,

i.e. F1, an harmonic average between precision and recall.

V. RESULTS AND DISCUSSION

In this section we evaluate the performance obtained on the
Twitter data set using the three approaches described in Sec-
tion III. Table III summarizes the performance results obtained
by classifying the dataset, considering the F1 measure.

Analysing the table we can observe that the use of the
incremental approach outperforms the overall classification of
the time-window model and the ensemble model, except in the
Sudden #1 drift. In this particular drift, the ensemble model
outperform the incremental model with a F1 score of 58.42%
against the F1 score of 54.85%. Nevertheless, this is the only
drift in which this occurs, which seems to be explained by
being a fast occurring sudden drift, as it appears and disappears
rapidly, differently from the Sudden #2 that occurs during a
longer period. The incremental model, by having a much broad
view of the whole time collection, fails to identify smaller and
faster occurring drifts. In this particular case, a model with less
memory can be appropriate as there is no gain in retaining the
information about this drift.

When considering the average of the F1 score, the time-
window model scores 51.53%, it is outperformed by the
ensemble model with 60.31% and finally by the incremental
model with a F1 score of 76.39%. The obtained results were
expected as the incremental model decides with the knowledge
of the whole collection previously seen, differently from the
time-window model and even the ensemble model. One can
argue that the ensemble model, by using the time-window
models created in each time-window, could still have the
information of the previously seen examples, however, as the
decision is combined, errors can also arise as all the models
previously created contribute to the decision and can induce
errors in the final decision.

It is also important to note that the ensemble model performs
better than the time-window in the majority of drifts, neverthe-
less, in the drift Gradual #1 and in the drift Incremental #1, the
ensemble scores 40.45% against 49.88% and 30.69% against
41.41%, respectively, which are significant results. These drifts
have the particularity of being the only ones that increase their
frequency over time, which seem to denote that there is a
relation between their nature and the performance obtained by
the ensemble model. The explanation for this phenomenon is
that in the first occurring time-windows, considering the time
line, the time-window models that are created to compose the
ensemble tend to fail, as they have not seen enough positive
examples. In the last time-windows they contribute equally to
the output of the ensemble and influence in a negative way the
classification provided by the ensemble. This does not occur
with a decreasing frequency drifts because when the models
that have seen less positive examples start to participate in
the ensemble decision, the examples they have to identify are
less (as the frequency is decreasing) and thus the ensemble
fails in a smaller proportion. This also seems to denote that
the ensemble model tends to take more time to adapt to a
changing environment.

Besides the mentioned drifts, in Regular #1 the ensemble
model is also outperformed by the time-window model, but in
this case with less significant results, 55.53% against 55.78%.
We believe that this is related to the tie mechanism, as the
examples miss classified are just a few (when comparing with
the time-window model) and are those in which there was a tie
and the last model, that is called to untie, fails the decision.
Finally it seemed strange in a first glance that Regular #3
had such a bad performance, specially when compared with
a pronounced drift. The results might be explained by the
hashtag we choose to represent it, #nowplaying. This hashtag
is commonly used to refer the songs that users are playing
in their computers or mobile devices, usually just posting
the song name and the corresponding artist. Considering the
spectrum of musics and artists we suspect that the diversity
of those tweets, along with its short encoding, compromises
the performance of the classifier. One can also notice that
Regular #1 with the hashtag #jobs could suffer from the
same characteristics, still, in this particular case, tweets have
linking words like hiring, recruiting or opportunity that might
be informative of the tweet content.

VI. CONCLUSIONS

In this paper we have presented a threefold approach to
learn in the presence of concept drift in Twitter streams.
Three different models were proposed: a time-window model,
an ensemble based model and an incremental model. We
have also simulated different types of drift by artificially
timestamping real tweets to evaluate and validate our strategy.

The results obtained revealed the usefulness is using diffe-
rent strategies in the awareness of different kinds of drift. More
precisely, we have identified that the same learning model
performs equally with drifts of the same nature, and that for
instance in the case of a decreasing frequency drift, which
means a concept that tends to disappear, it is better to use a



time-window model instead of an ensemble model.
Furthermore, the results have also shown that memory,

or the ability to keep the information already gathered, is
important in the adaptability to drift in the learning process, as
the incremental model tends to perform better than the other
two models. Nevertheless, as storing can be a constraint in
the Twitter stream data, it is important in future approaches to
identify what is an outdated example, and a more profound
study is imperative to detail for how long it is useful to
store examples. This can be done by analyzing different time-
window sizes, so we can reach an equilibrium between the
computational burden of storing and processing huge amounts
of data and the usefulness of storing those examples.

Another strategy is to use selective pruning, which means
to understand which examples are considered most significant,
the ones with interest to keep, and those which might not be
relevant to identify future drifts of the same nature. Those
could be discarded to reduce the computational effort.

Future work will include not only the identification of
examples that can be discarded, as outdated or not significant,
but also further study on the characteristics of each drift.
Further steps also include the study of different kinds of drift,
where the same concept is used with different meanings in
two different moments.

A more intensive study on the drift patterns is also foreseen;
especially by identifying those that occur in the Twitter
scenario. It is also relevant to extend the learning models
to include different weighting mechanisms in the ensemble
model, as the models that compose the ensemble may con-
tribute differently to the final decision when different drift
patterns are present.
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