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Abstract—Social networks are making part of the daily routine
of millions of users. Twitter is among Facebook and Instagram
one of the most used, and can be seen as a relevant source of
information as users share not only daily status, but rapidly
propagate news and events that occur worldwide. Considering
the dynamic nature of social networks, and their potential in
information spread, it is imperative to find learning strategies
able to learn in these environments and cope with their dynamic
nature.

Time plays an important role by easily out-dating information,
being crucial to understand how informative can past events be to
current learning models and for how long it is relevant to store
previously seen information, to avoid the computation burden
associated with the amount of data produced.

In this paper we study the impact of longstanding messages
in micro-blogging classification by using different training time-
window sizes in the learning process. Since there are few studies
dealing with drift in Twitter and thus little is known about the
types of drift that may occur, we simulate different types of
drift in an artificial dataset to evaluate and validate our strategy.
Results shed light on the relevance of previously seen examples
according to different types of drift.

I. INTRODUCTION

Twitter is a micro-blogging service where users are able to
post text-based messages up to 140 characters, also known
as tweets. It is also considered one of the most relevant
social network, along with Facebook, as millions of users
are connected to each other by a following mechanism that
allows them to read each others posts. The importance of
Twitter is measured not only by the number of members but,
as a consequence of that, by the recognition of entities like
governments, brands or news agencies to maintain Twitter
accounts in order to easily communicate with their fellows.

In its essence Twitter is used by individuals to easily share
with family and friends their daily activities. However, this
concept has evolved and nowadays it is considered a relevant
communication platform, as radio or television were, almost
in exclusive, a few years ago. Besides the traditional sharing
of daily routines, users might share information of broad
interest, for instance when multiple users report an event like
an earthquake or a terrorist attack. There are a wide range of

applications like event detection [1]–[4], academic tool [5]–
[7], news media [1], [8] or mining political opinion [9], [10].

Twitter is also responsible for the popularization of the
concept of hashtag. An hashtag is a single word started by the
symbol “#” that is used to classify the message content and
to improve search capabilities. Although it was popularized
in Twitter, it is now being widely used, and it has been
adopted not only by other social networks like Facebook or
Instagram, but also by other platforms, like television, in
order to bridge with their online content. The classification
of a tweet is particularly important considering the amount
of data produced in Twitter. Besides that, if we are able to
suggest an hashtag for a given tweet, we are able to bring
a wider audience into discussion [11], spread an idea [12],
get affiliated with a community [13], or bring together other
Internet resources [14]. Considering the above, it is relevant
to study the possibility of identifying an hashtag based on the
message contents, i.e., if it is feasible to predict the hashtag
based on the message content.

Hashtag prediction is important, but learning in the Twitter
environment is not an easy task and requires specific ap-
proaches, not only because of the amount of data produced,
but also due to its dynamic nature. As tweets are organized in a
time descending order users tend to perceive as more relevant
the newly posted material. When we scale the posted material
to millions of users, we realize that time plays an important
role, by easily and fast out-dating information. Moreover,
in this extremely dynamic environment, concepts appear and
reappear, as users concentrate their focus to newly occurring
events, forgetting old ones forever or during an unpredictable
amount of time. For instance, during a terrorist attack there
is a sudden burst of messages related to it during a few days
that will probably fade as time passes by, but might reappear
if newly information appears, or if it has passed one year or
a decade and the event is mentioned again.

To learn in this environment, and considering how infea-
sible might be using all the data produced, it is essential
to understand how informative past events can be to current
learning models. This influences for how long it is relevant to
store previously seen information, to reduce the computation



burden.
In this paper we study the impact of longstanding messages

in micro-blogging classification by using different training
time-windows sizes in the learning process. We have also built
an artificial dataset by simulating different types of drift as it is
unknown the types of drift that occur in Twitter real scenario.
The obtained results show the relevance of previously seen
examples according to different types of drift.

The rest of the paper is organized as follows. We start in
Section II by describing the related work regarding social net-
works and learning in dynamic environments. In Section III we
detail our proposed approach, and then proceed in Section IV
with the explanation of the experimental setup, including the
dataset description, the pre-processing methods, learning and
evaluation approaches. In Section V we present and analyse
the results obtained. Finally, in Section VI we present the most
relevant conclusions and delineate some directions for future
work.

II. RELATED WORK

Social networks have gained significant importance and are
being widely studied in many fields in the last years. Modern
challenges in social networks involve not only computer sci-
ence issues but also social, political, business, and economical
sciences. In computer science, and considering our focus
on Twitter, recent works comprise event detection [2], [3],
information spreading [15], community mining [16], crowd-
sourcing [17] and sentiment analysis [10].

In [18] we have proposed the use of meta-classes to
boost the performance of Twitter messages classification. This
preliminary study shows the possibility of evaluating mes-
sage content in order to predict hashtags. Regarding Twitter
hashtags, and particularly hashtag recommendation, we have
also identified the recent study presented in [19], where an
approach for hashtag recommendation is introduced. This
approach computes a similarity measure between tweets and
uses a ranking system to recommend hashtags to new tweets.
In [20] the use of hashtags to classify Twitter messages is
done by clustering similar tweets in a graph based collective
classification strategy. The presented results are promising,
despite the fact that this is not an adaptive strategy. A different
approach is proposed in [21], where an event detection method
is described to cluster Twitter hashtags based on semantic
similarities between the hashtags. This work is in line with our
previous work except for the fact that the semantic similarities
are computed based on the message content similarities rather
than being based on semantic hashtag similarities.

Regarding learning in Twitter, one must consider the pres-
ence of drift. The learning task requires specific approaches,
because differently from in commonly used approaches, not
all instances contribute equally to the final concept [22]. In
non-stationary environments like the Twitter stream, effective
learning requires a learning algorithm with the ability to
detect context changes without being explicitly informed about
them, quickly recover from the context change and adjust
its hypothesis to the new context. It should also make use

of previous experienced situations when old contexts and
corresponding concepts reappear [23]. According to [24], there
are four types of drift, namely sudden, gradual, incremental
and reoccurring. They are represented in Fig. 1.

[25] identified three approaches to handle concept drift:
(1) instance selection, (2) instance weighting and (3) ensem-
ble learning. A review of concept drift applied to intrusion
detection can be found in [26].

In [27] the algorithm Learn++.NSE is proposed as an
algorithm to deal with drift. It learns from consecutive batches
of data without making any assumptions on the nature or rate
of drift. It learns from environments that experience constant
or variable rate of drift, addition or deletion of concept classes,
as well as cyclical drift. To deal with scenarios of imbalanced
data, the authors in [28] introduce the Learn++.NIE and the
Learn++.CDS as two new members of the Learn++ family of
incremental learning algorithms that explicitly and simultane-
ously address the aforementioned phenomena. Learn++.CDS
is a combination of the Learn++.NSE algorithm with the
SMOTE algorithm proposed by [29]. A different ensemble
method called DWM-WIN was recently proposed in [30], to
overcome the known limits of [31] namely not considering the
time classifiers were define nor the past correct classifications.

We also proposed in [32] three different models to learn in
dynamic environments: a time-window model, an ensemble-
based model and an incremental model. It is a preliminary
study in where we were able to identify whose might be
the learning characteristics that are needed to learn in this
environment, despite the fact that the time-window model
we proposed is unable to retain any past information, the
ensemble-based model combines time-window models and the
incremental model must store all the information gathered.

Recent important works in the field include [33]–[35].
In [33] authors present an adaptive classifier that exploits
both supervised and unsupervised data to monitor the process
stationarity. The classifier follows the just-in-time approach
and relies on two different change-detection tests to reveal
changes in the environment and reconfigure the classifier
accordingly. In [34] is presented a theoretically supported
framework for active learning from drifting data streams and
three active learning strategies are developed for streaming
data that explicitly handle concept drift. They are based on
uncertainty, dynamic allocation of labeling efforts over time,
and randomization of the search space. And finelly, in [35]
the authors introduce compacted object sample extraction
(COMPOSE), a computational geometry-based framework to
learn from nonstationary streaming data, where labels are
unavailable (or presented very sporadically) after initialization.

The related work presented so far highlights the importance
of dealing with concept drift specially in dynamic scenarios
like social networks, and particularly in Twitter, where impor-
tant information can be mined. Multiple applications like spam
email filtering, intrusion detection, recommendation systems,
event detection or improve search capabilities are just pointed
examples.



III. PROPOSED APPROACH

This section describes the proposed approach to study
the effect of longstanding messages in micro-blogging clas-
sification. We will firstly formalize the problem, a twitter
classification problem, and then the proposed strategy we used
to define different training time windows.

Twitter classification is a multi-class problem that can be
cast as a time series of tweets. It consists of a continuous se-
quence of instances, in this case, Twitter messages, represented
as X = {x1, . . . , xt}, where x1 is the first occurring instance
and xt the latest. Each instance occurs at a time, not necessarily
in equally spaced time intervals, and is characterized by a
set of features, usually words, W = {w1,w2, . . . ,w|W|}.
Consequently, instance xi is denoted as the feature vector
{wi1,wi2, . . . ,wi|W|}.

When xi is a labelled instance it is represented as the pair
(xi, yi), being yi ∈ Y = {y1, y2, . . . , y|Y|} the class label for
instance xi.

We have used a classification strategy previously introduced
in [18], where the Twitter message hashtag is used to label
the content of the message, which means that yi represents
the hashtag that labels the twitter message xi. Even though
this classification strategy may seem naive, as we are unable
to guaranteed that all messages are correctly classified by
their hashtags, it also seems to be one of the most promising
heuristics.

The purpose of this classification problem is to define the
unknown predict function ht : X → Y , that predicts the class
label yi, the hashtag, according to xi, the twitter message. In
a time line perspective, ht uses the historical data {x1, . . . , xt}
to predict xt+1. The function ht is then the Twitter message
classifier used to predict the hashtag of the set of tweets
presented in the subsequent time windows.

Notwithstanding the twitter message classification is a
multi-class problem in its essence, it can be decomposed in
multiple binary tasks in a one-against-all binary classification
strategy. In this case, a classifier ht is composed by |Y | binary
classifiers.

In order to perceive the importance of past examples in the
classification process we present a batch learning model that
retains previously seen examples during a defined period. By
retaining examples during different periods we aim to evaluate
for how long it is relevant to keep information according to
the different types of drift, and thus best tailoring the memory
mechanism needed for classification purposes.

Algorithm 1 defines the basic steps of our learning model.
For each collection of documents T in a time-window t,
T t = {x1, . . . , x|T t|} with labels {y1, . . . , y|T t|} → {−1, 1},
and considering the training window size j, the dataset Dt is
updated incrementally if the batch temporal moment satisfies
the condition t - j. By updating the documents collection Dt
based on a training time window we retain the information
during a defined amount of time, discarding the examples that
occur before that moment.

Considering Twitter as a particular case of a time series,
one must devise the classification into proper learning mo-

Algorithm 1: Learning Model

Input:
For each collection of documents T in a time window t,
T t = {x1, . . . , x|T t|} with labels
{y1, . . . , y|T t|} → {−1, 1} t = 1, 2, . . .

Training window size j

1 for t=1,2,. . . T do
2 if t − j then
3 Dt ← Dt ∪ T t
4 end
5 end

6 Classifier Ct : Learn (Dt), obtain: ht: X → Y
7 Classifier Ct : Classify (T t+1), using: ht: X → Y

dels. When a new collection of documents in the subsequent
time window occur, we will create a new learning model as
proposed above to classify the newly seen examples.

We also propose to generate an artificial dataset that si-
mulates different times of drift because it is not known the
types of drift that occur in the Twitter real scenario. By
artificially inducing different types of drift with controlled
features, we intend to mainly focus the identification of the
learning characteristics best tailored to deal with them, instead
of using a real scenario where one can not guarantee not only
the presence of drift but also its correct identification.

The drifts we intend to represent are those proposed by [24],
namely sudden, gradual, incremental and reoccurring. We
extend these four types of drift to ten drifts as we also aspire
to simulate more drift patterns. For instance positive gradual
and negative gradual, and the normality, by using concepts that
occur with the same frequency over time.

The main idea of our dataset is to drift the frequency of
the Twitter message classification. Since a Twitter labelled
dataset is missing so far, we use the hashtags enclosed in
the message as the message classification, in an approach we
have previously introduced in [18].

IV. EXPERIMENTAL SETUP

A. Dataset

The dataset we have defined to evaluate and validate our
strategy was carried out by defining 10 different hashtags that
would represent our drifts, based on the assumption that they
would denote mutually exclusive concepts, like #realmadrid
and #android. By trying to use mutually exclusive concepts we
intent to avoid misleading a classifier, as two different tweets
could represent the same concept, and that way introducing a
new variable to our scenario that could mislead the possible
obtained results. In order to achieve a considerable amount of
tweets, and consequently diversity, we have chosen trending
hashtags like #syrisa and #airasia. Table I shows the chosen
hashtags and the corresponding drift they represent. This



Figure 1. Different types of drift

correspondence was done arbitrarily and do not correspond
to any possible occurrence in the real Twitter scenario, since
as stated above, no information is known about the occurrence
of drifts in Twitter.

The Twitter API1 was then used to request public tweets that
contain the defined hashtags. The requests have been cared of
between 28 December 2014 and 21 January 2015 and tweets
were only considered if the user language was defined as En-
glish. We have requested more than 75.000 tweets concerning
the given hashtags, even though some of them were discarded,
like for instance those tweets containing no message content
besides the hashtag. The hashtag was then removed from
the message content in order to be exclusively used as the
document label. The tweets matching this presumptions were
considered labelled and suited for classification purposes, and
were used by their appearing order in the public feed.

We have simulated the different types of drift by artificially
defining timestamps to the previously gathered tweets. Time
is represented as 100 continuous time windows, in which the
frequency of each hashtag is altered in order to represent the
defined drifts. Each tweet is then timestamped so it can belong
to one of the time windows we have defined. For instance,
Sudden #1 is represented by the appearance of 500 tweets with
the hashtag #syrisa in each time windows from 25 to 32, and in
any of the other time windows this hashtag appear. Differently
from Sudden #1, Sudden #2 is represented with only 200
tweets with the hashtag #airasia in each time windows from
14 to 31, we tried to simulate a more soft occurring drift,
but with a more long-standing appearance. By making both
concepts disappear, in time windows, 32 and 31, respectively,
we also intended to simulate the opposite way of the [24]
proposed sudden drift. Due to space constraints it is unbearable
to present a table with the frequency of each hashtag in each
time window, but it is important to state that Incremental #2
and Gradual #2 are represent by the same number of tweets in
an equal number of time windows, but in a descent way than
represented in Incremental #1 and Gradual #1 and Normal #1,
Normal #2 and Normal #3 differ in the number of tweets that
appear in a constant way in all the time windows. Our final

1https://dev.Twitter.com/

Drift Hashtag
Sudden #1 #syrisa
Sudden #2 #airasia
Gradual #1 #isis
Gradual #2 #bieber

Incremental #1 #android
Incremental #2 #ferrari

Reoccurring #realmadrid
Normal #1 #jobs
Normal #2 #sex
Normal #3 #nfl

Table I
MAPPING BETWEEN TYPE OF DRIFT AND HASHTAG.

dataset contains 34.240 tweets.

B. Representation and Pre-processing

A tweet is represented as one of the most commonly used
document representation, which is the vector space model, also
known as Bag of Words. The collection of features is built
as the dictionary of unique terms present in the documents
collections. Each tweet of the document collection is indexed
with the bag of the terms occurring in it, i.e., a vector with
one element for each term occurring in the whole collection.
The weighting scheme used to represent each term is the term
frequency - inverse document frequency, also know as tf-idf.

High dimensional space can cause computational problems
in text-classification problems where a vector with one element
for each occurring term in the whole connection is used
to represent a document. Also, overfitting can easily occur
which can prevent the classifier to generalize and thus the
prediction ability becomes poor. In order to reduce feature
space pre-processing methods were applied. These techniques
aim at reducing the size of the document representation
and prevent the mislead classification as some words, such
as articles, prepositions and conjunctions, called stopwords,
are non-informative words, and occur more frequently than
informative ones. An english-based stopword dictionary was
used, but Twitter related words like “rt” or “http” were also
considered as they can be seen as stopwords in the Twitter
context. Stopword removal was then applied, preventing those
non informative words from misleading the classification.

Stemming method was also applied. This method consists in
removing case and inflection information of each word, reduc-
ing it to the word stem. Stemming does not alter significantly
the information included, but it does avoid feature expansion.

Class Positive Class Negative
Assigned Positive a b

(True Positives) (False Positives)
Assigned Negative c d

(False Negatives) (True Negatives)

Table II
CONTINGENCY TABLE FOR BINARY CLASSIFICATION.



Training window size
Drift 1 2 3 4 5 6 7 8 9 10

Sudden #1 92,40% 93,01% 92,99% 92,92% 92,83% 92,80% 92,75% 92,73% 92,69% 92,78%
Sudden #2 90,60% 92,12% 92,70% 93,19% 93,34% 93,36% 93,33% 93,46% 93,43% 93,41%
Gradual #1 52,53% 61,91% 66,22% 68,29% 69,95% 71,00% 73,91% 75,64% 78,49% 80,56%
Gradual #2 74,27% 77,26% 78,94% 78,93% 81,39% 83,82% 85,67% 87,35% 90,10% 91,04%

Incremental #1 83,53% 87,90% 90,37% 91,82% 92,46% 93,11% 93,58% 93,83% 94,08% 94,41%
Incremental #2 60,01% 71,79% 77,17% 80,15% 82,62% 84,41% 85,85% 86,60% 87,52% 88,15%

Reoccurring 54,74% 64,47% 65,17% 64,53% 63,83% 63,08% 62,33% 61,85% 59,14% 58,81%
Normal #1 24,72% 54,03% 66,32% 73,07% 77,03% 79,08% 80,97% 82,78% 83,68% 84,40%
Normal #2 80,07% 87,15% 89,53% 90,87% 91,74% 92,64% 93,40% 93,68% 93,89% 94,11%
Normal #3 42,75% 71,14% 78,03% 82,25% 83,85% 85,40% 86,72% 87,61% 88,12% 88,50%

Average of micro-averaged F1 71,85% 80,01% 83,16% 84,91% 86,09% 87,04% 87,92% 88,53% 89,10% 89,54%

Table III
MICRO-AVERAGED F1

C. Learning and Evaluation

The evaluation of our approach was done by the previously
described dataset and using the Support Vector Machine
(SVM). This machine learning method was introduced by
Vapnik [36], based on his Statistical Learning Theory and
Structural Risk Minimization Principle. The idea behind the
use of SVM for classification consists on finding the opti-
mal separating hyperplane between the positive and negative
examples. Once this hyperplane is found, new examples can be
classified simply by determining which side of the hyperplane
they are on. SVM constitute currently the best of breed kernel-
based technique, exhibiting state-of-the-art performance in text
classification problems [37]–[39]. SVM were used in our
experiments to construct the proposed models.

In order to evaluate a binary decision task we first define a
contingency matrix representing the possible outcomes of the
classification, as shown in Table II.

In order to evaluate the binary decision task we defined
well-known measures based on the possible outcomes of
the classification, such as recall (R = a

a+c ) and precision
(P = a

a+b ), as well as combined measures, such as, the
van Rijsbergen Fβ measure [40], which combines recall and
precision in a single score:

Fβ =
(β2 + 1)P ×R
β2P +R

. (1)

Fβ is one of the best suited measures for text classification
used with β = 1, i.e. F1, an harmonic average between
precision and recall (2), since it evaluates unbalanced scenarios
that usually occur in text classification settings and particularly
in text classification in the Twitter environment.

F1 =
2× P ×R
P +R

. (2)

Considering the proposed approach and the fact that we
are working with a time series and we use a one-against all
strategy, we will have a classifier for each batch of the time
series that is composed by |Y | binary classifiers, being |Y |
the collection of possible labels. To perceive the performance
of the classification for each drift pattern, we will consider all

the binary classifiers that were created in all the time series
batches. To evaluate the performance obtained across time, we
will average the obtained results. Two conventional methods
are widely used, specially in multi-label scenarios, namely
macro-averaging and micro-averaging. Macro-averaged per-
formance scores are obtained by computing the scores for
each learning model in each batch of the time series and then
averaging these scores to obtain the global means. Differently,
micro-averaged performance scores are computed by summing
all the previously introduces contingency matrix values (a,b,c
and d), and then use the sum of these values to compute a
single micro-averaged performance score that represents the
global score.

To evaluate the global performance for each drifting pattern
we will use a micro-averaged F1, that will considered the
results obtained for each model created to classify the defined
pattern in each batch of the time series. The use of macro-
averaged F1 is discarded because it is impossible to calculate
the F1 measure in all the batches where assigned positives
do not exist, as precision is totally dependent on assigned
positives. This condition occurs in the batches were a classifier
sees a class for the first time, classifying all the newly seen
examples as negative examples.

V. EXPERIMENTAL RESULTS

In this Section we evaluate the performance yielded on the
Twitter data set using the approach described in Section III.
Table III summarises the performance results obtained by
classifying the dataset, considering the micro-averaged F1

measure.
Analysing the table we can observe that in global terms, and

considering the average of the micro-averaged F1, the increase
of the training time window size improves the classification.
This is normal and expected as the learning models are trained
with more examples and this leads to a better performance.
Nevertheless, and considering that it is unreasonable to store
all the examples for training purposes, it is important to
determine the best relation between performance and the
computation burden associated with storing and processing the
training examples.
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Figure 2. Micro-averaged F1 obtained by time window

As depicted in Fig. 2, the increase in the average of micro-
averaged F1 seems to slow above training time window size
4, which means that above that value the cost benefit relation
is less substantial. It is also important to note the major
performance increase from training time window size 1 to
training time window size 2. This happens because using
two training time windows instead of one implies we that
we doubled the training size, which is a major improvement.
From then on the proportion is less substantial, for instance
from training time window 2 to training time window 3 there
is only a 50% increase, while from training time window size
3 to training time window size 4 we have an increase of 33%
and so forth. One can argue that this is highly dependent on
the computational complexity of processing one time window
and no values are shown in this study about this complexity,
but we have used similar sized time windows, which means
that in proportional terms one can define the time window
based on the computational complexity that can handle.

Although the overall performance seems to be increasing
with the increase of the training time window size, there are
particular cases in which the performance decreases. Firstly,
there are small decreases that are so small, and do not define
a decreasing pattern, that one can consider as less significant,
like for instance in the drift Gradual #1 from time window
size 3 to time window size 4, respectively 78,94% to 78,93%.
Finally there are performance decreases that, small or not,
seem to define a pattern that might be related with the nature of
the drift pattern that is represented, like Sudden #1, Sudden#2
and Reoccurring.

The performance in the identification of tweets from Sud-
den#1 increases from training time window size 1 to training
time window size 2. As explained above this might be related
to the doubled size time window in the training phase, but then
on, even in small amounts, the performance starts to decrease.
As mentioned in the Section IV-A, drift Sudden #1 occur
only in time windows from number 25 to 32, with a constant
amount of tweets per time window, 500 in each time window.
As an example, to classify the examples in time window 27,

with training time window size 2, the classifier receives as
training examples all the examples from time windows 25 and
26, which means that we sees more positive examples than we
would if trained with only examples from time window 26 (in
case the time size window is 1). But when we increase the
time window to 4, that means that in the training phase the
classifiers sees examples from time windows 23, 24, 25 and
26, and in time windows 23 and 24 there are only negative
examples, since the drift only starts to happen in the time
window 25. This explains why in sudden drifts the increase
of the time size window leads to a decrease in the performance,
because past events hardly contribute with positive examples
as the drift appeared in a sudden way in a specific temporal
moment.

It is also noteworthy that in Sudden #2 the decrease pattern
is different. Whilst it is a drift with the same nature, one should
expect the same pattern in the classification performance, but
the major difference from drift Sudden #1 to Sudden #2 is
that Sudden #1 is more abrupt than Sudden #2. As referred in
Section IV-A, the number of examples that appear in each time
window where Sudden #2 is represented is more than a half
that Sudden #1, from 500 to 200 tweets, but it also happens that
Sudden #2 is much longer in time that Sudden #1. As being a
much longer drift past events contribute differently to the per-
formance of the classifier, because in Sudden #2 past windows
might more easily contribute with more positive examples than
in Sudden #1. This attest the importance of the nature of the
drift pattern, along with its particular characteristics, in the
performance of the classification.

There is also a decrease performance pattern in the drift
Reoccurring. Firstly, it is importance to explain the charac-
teristics of Reoccurring in order to understand the obtained
results. Reoccurring occur in 5 consequent time windows, for
instance from time window 12 to 16 or from time window
28 to 32 and then disappear during 11 time windows. As a
consequence, from time window 17 to 27 (both inclusively)
there are not positive examples from this class, and also from
time window 33 to 43, but in 44 until 48 the drift pattern in



again represented with positive examples. The decrease pattern
might be explained because Reoccurring can be seen as having
the same characteristics of the sudden drifts, specially because
it always disappears for 11 time windows. As we do not use
in our experiments time window sizes bigger then 10, we do
not reach the point in which we provide the classifier with
positive examples from the previous burst in which the drift
occur, and thus increasing the time window and not reaching
that moment could always lead to the same thing that happen
with the sudden drift and explained above.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have studied the impact of longstanding
messages in micro-blogging classification. The proposed ap-
proach uses different training time windows sizes to under-
stand the possibility of achieving the best balance between the
classifier performance and the computational effort needed in
the training phase. Since it is not known which types of drift
occur in the context of social networks, and particularly in
Twitter, we have also simulated different types of drift in an
artificial dataset to evaluate and validate our strategy.

The results revealed the usefulness of our strategy, specially
because it is easy to identify a major slowdown in the increase
of performance from training time window size 4 to the
subsequent training time window sizes. More precisely, we
have identified that there is a major improve from time window
size 1 to time window size 2. Even thought in average the
increase in the training window size is echoed in an increase
in the classification performance, the cost benefit decreases
from then on, and specially above time window size 4.

It is also important to conclude the highlights identified
concerning the effect of the increase of the training time
window size in the classification performance considering
drifts with the same nature, specially in cases in which the
characteristics of the drift are equal or similar to sudden drift.
In these cases, a different strategy must be put forward, as the
increase of the training time window size will not always lead
to an increase of the classification performance rather than to
a decrease, more significant or not depending of the abrupt-
ability and the long-standing of the represented drift pattern.

Our future work will include a pruning strategy based on
the identification of which are the relevant examples for future
classification purposes, and thus reduce the size of the training
set by discarding the non relevant ones. We also aim to validate
the scalability of our strategy by using distributed computing
in a real Twitter scenario.
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